基于主成分分析的GA-BP模型在城市需水预测中的应用研究
Application of GA-BP model based on principal component analysis to urban water demand prediction
  
DOI:
中文关键词:  主成分分析  BP神经网络  遗传算法  GA-BP模型  需水预测
英文关键词:principal component analysis  BP neutral network  genetic algorithm  GA-BP model  water demand prediction
基金项目:国家重点计划研发课题(2016YFC0400909;2016YFC0402605);江苏省高校优势学科建设工程资助项目(水利工程);
作者单位
李晓英 ,苏志伟1,周 华2,贾晓菲2,叶根苗1,蔡晨凯1 (1.河海大学 水利水电学院江苏 南京 2100982.泰州市水资源管理处江苏 泰州 225300 
摘要点击次数: 1328
全文下载次数: 
中文摘要:
      针对城市需水预测模型中需水量影响因子多、影响因子之间普遍存在多重共线问题,以及BP神经网络收敛速度慢、易陷入局部最优等缺点,提出一种由主成分分析、遗传算法及BP神经网络三者相结合的改进预测模型。以泰州市为实例,建立以主成分分析筛选需水量主要影响因子,遗传算法优化BP网络连接权值和阈值的需水预测模型,预测结果与BP神经网络预测模型预测结果做对比。结果表明:改进预测模型对泰州市2003-2014年需水量预测的平均相对误差为0.564%,最大相对误差为1.681%,精度优于BP神经网络预测模型;改进预测模型预测值与实际泰州市需水量吻合良好且训练速度更快、预测精度更高,可作为需水预测的一种有效方法。
英文摘要:
      There are too many impact factors of water demand in the urban water demand prediction model and most of the factors are multicollinear. Besides, the BP neural network has slow convergence rate and easily gets into a local optimum. To tackle these problems, we proposed an improved prediction model by combining the principal component analysis (PCA), genetic algorithm (GA), and back propagation neural network (BPNN). Taizhou city was taken as a case for study. We established a water demand prediction model that selects the main impact factors of water demand by principal component analysis and optimizes the connection weights and thresholds of the BP neural network by genetic algorithm. The BP neural network prediction model was set up as the contrast model. The results showed that the average relative error and the maximum relative error of water demand prediction by the improved model in 2003-2014 in Taizhou city were 0.564% and 1.681% respectively. The precision was superior to that of the BP neural network prediction model. The results predicted by the GA-BP model matched with the actual water demand data of Taizhou city, and the model had faster calculation speed and higher precision. It can be used as an effective method for water demand prediction.
查看全文  查看/发表评论  下载PDF阅读器