DOI: 10.13476/j. cnki. nsbdqk. 2015.01.017

基于 GIS 的铜川市耀州区地质灾害危险性评价

潘网生^{1,2,3}, 卢玉东^{1,2}, 郭晋燕^{1,2}

(1.长安大学环境科学与工程学院,西安 710054; 2.长安大学 旱区地下水文与生态效应教育部重点实验室,西安 710054;3.西安思源学院 管理学院,西安 710038)

摘要:通过对铜川市耀州区 120 处滑坡、66 处崩塌,2 处小规模泥石流现场调查及资料的收集整理与分析,分别构建 滑坡、崩塌及泥石流的地质灾害危险性评价指标体系并通过 GIS 技术和信息量模型量化指标,同时综合考虑指标 信息量排序结果与灰色关联度分析结果最终确定指标权重,得到该区滑坡、崩塌及泥石流的危险性等级区划图。研 究结果表明:基于 GIS 的分灾害类型的危险性评价充分尊重了研究区地质灾害类型自身发育特点和规律,为地质 灾害分类管理提供了科学依据,使得当地的地质灾害预防与控制工作更具针对性、时效性和科学性,且具有向类似 黄土区推广的价值。

关键词:黄土;分灾种;危险性评价;信息量模型;GIS;灰色关联度 中图分类号:P642 文献标志码:A 文章编号:1672-1683(2015)01-0072-06

Hazard assessment of geological disaster in Yaozhou district of Tongchuan City based on GIS

PAN Wang sheng^{1,2,3}, LU Yur dong^{1,2}, GUO Jirr yan^{1,2}

(1. School of Environment Science & Engineering, Chang'an University, Xi an 710054, China; 2. Key Laboratory

of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University,

Xí an 710054, China; 3. School of Management, Xí an Siyuan University, Xí an 710038, China)

Abstract: Through the field investigation and data collection of 120 landslides, 66 collapses, and 2 small scale debris flows in Yaozhou district of Tongchuan City in Shaanxi Province, the hazard assessment index systems of geological disasters of landslide, collapse, and debris flow were developed. The indexes were quantified using the GIS technology and information amount model, and the index weights were determined by the information amount ranking results and grey relational analysis, which can generate the hazard grade zoning maps of landslide, collapse, and debris flow in the study area. The results showed that the haz ard assessment of distinction disaster type based on GIS follows the development characteristics and laws of different disasters, which can provide the scientific basis for the classification management of geological disasters in Yaozhou district of T ongchuan. Accordingly, the prevention and control measures of local geological disasters can be more pertinent, prescriptive, and scientific, and the method can be applied to the loess area.

Key words: loess; disaster type; hazard assessment; information amount model; GIS; gray relational grade

地质灾害危险性评价是一项有效的防灾、减灾措施,也 是进行其风险性评价的必要前提^[+2]。目前国内在区域地质 灾害危险性评价研究领域,往往不分灾种类型而构建统一的 指标体系进行评价。事实上,单一影响指标对不同灾种的贡 献度并不一样,例如,在其他条件相同的情况下,坡度对崩塌 的贡献度要大于其对滑坡和泥石流的贡献度;而汇水区域地 形及面积大小是泥石流要考虑的重要因素,但其对滑坡和崩 塌并无实际意义。此外,不同的灾害类型,其防控和治理办 法也不尽相同。因此,为更有效实现区域地质灾害危险性评 价及风险管理,有必要针对不同的灾害类型,选取符合各灾种自身机理的影响指标,并配以恰当的权重来建立相应的评价指标体系。

关于地质灾害危险性评价方法,目前多采用 GIS 技术结 合其它模型或技术手段进行研究,如国外与 GIS 技术相结合 的数学模型或方法主要有基于统计分析模式的证据权重 法^[3]、逻辑斯蒂回归模型^[4]、基于 GIS 的矩阵法^[5]、二元与多 元统计法^[6]、三维确定性模型^[7]、层次分析法(AHP)^[8]、概率 分析法^[9],以及遥感^[10]等;国内也有 GIS 与遥感^[11]、层次分

收稿日期: 2014 0F 09 修回日期: 2014 10 21 网络出版时间: 2014 12 03
网络出版地址: http://www.cnki.net/kcms/detail/13.1334.TV.20141203.1408.032.html
基金项目: 国家自然科学基金项目(40372114)
作者简介: 潘网生(1975), 男, 江苏镇江人, 讲师, 博士研究生, 从事地质灾害风险评价与生态环境研究。E-mail: m cypang@ sina.com

析法^[12]、趋势面分析法^[13]、模糊综合评判法^[14]、信息量模型 法^{15]}相结合的评价方法。其中以信息量模型法最为典型, 研究成果也最为丰硕。

本文以陕西省铜川市耀州区为例,尝试按照滑坡、崩塌、 泥石流等不同灾种类型分别建立评价指标体系,采用 GIS 技 术与信息量模型相结合的方法,对研究区的地质灾害危险性 进行评价。

1 研究区概况

铜川市耀州区地处陕西关中北部渭北黄土高原南缘。 全区总面积约1622 km²,区内梁峁相间,沟壑纵横,地质环 境条件复杂,人类工程活动频繁,且由于长期大规模的煤炭 资源开采,致使当地地质环境不断恶化,滑坡、崩塌、泥石流 等地质灾害频发。其中,滑坡是区内最主要的地质灾害类 型,主要以黄土滑坡与堆积层滑坡为主,岩质滑坡次之;崩塌 主要以黄土型为主,规模一般较小,岩质型崩塌多数发育在 节理发育的坚硬岩石中,土质崩塌多数发育在节理发育的第 四系风成黄土中;泥石流灾害不多,且规模较小。

通过详细的调查,目前查明的滑坡灾点有 120 处,崩塌 灾点有 66 处,小规模泥石流有 2 处。

2 地质灾害危险性评价

2.1 评价模型、方法及步骤

(1) 基于 GIS 的信息量模型。

目前以 GIS 技术为核心的信息量模型法得到积极推广 和应用,该方法基于概率思想计算某一评价单元内多种评价 指标组合的信息量值,具有一定的先进性、科学性和实用性。 信息量模型公式^[15]如下:

$$I_i = \sum_{i=1}^{p} \log \frac{N_i / N}{S_i / S} \tag{1}$$

式中:*S* 为已知样本总单元数; *N* 为已知样本中变形破坏的 单元总数; *S_i* 为有*x_i* 的单元个数; *N_i* 为有指标*x_i* 的变形破 坏单元个数。

信息量值越大,则说明地质灾害越易于发生,危险性亦 越高。

(2) 基于灰色关联度的指标权重法。

灰色关联度分析法在确定指标权重方面具有一定的优势,该方法可以科学、客观地反映各指标与地质灾害的关系, 避免人为经验所致的主观随意性。具体方法是通过 GIS 技 术提取 k 个典型灾害区域的灾点密度信息 x₀(k),分别与评 价指标数据层作技术叠加处理,获取各指标占典型灾害密度 图层的面积百分比 x₁(k), x₂(k),..., x_i(k),并作无量纲化处 理。指标所占面积百分比的大小反映该指标对灾害影响程 度的大小,各指标与典型灾害的关联度计算公式¹¹⁹如下:

$$\xi_{i}(k) = \frac{\frac{\min \min |x_{0}(k) - x_{i}(k)| + 0.5 \max |x_{0}(k) - x_{i}(k)|}{i |x_{0}(k) - x_{i}(k)| + 0.5 \max |x_{0}(k) - x_{i}(k)|} (2)$$

关联度的一般表达式为: $r_i = \frac{1}{N} \sum_{k=1}^{N} \xi(k)$, r_i 越大, 说明 关联程度越强, 对灾害发生的影响就越大, 赋予的权重就应 越大。

(3) 评价步骤。

首先,基于 GIS 的信息量模型法需要确定计算单元的栅格数,因此在利用信息量模型前,要将研究区离散化,得到不规则三角网(图1)。本文考虑研究区的实际情况,确定栅格单元大小为 25 m× 25 m,将研究区离散成 2 269 行,1 176 列,共计 2 579 574 个栅格单元。

Fig. 1 Triangulated irregular network in research the study area

其次,分别按灾害类型构建危险性评价指标体系。

再次,分别按灾害类型量化指标。基于 ARCGIS 软件平 台,提取各指标栅格数参与信息量模型计算,并对各指标的 信息量计算结果进行排序,同时结合灰色关联度计算结果最 终确定各指标权重。

最后,分别按灾害类型进行危险性等级区划。从前人经 验及统计学角度出发确定滑坡、崩塌及泥石流等地质灾害信 息量值的分界点,对其进行分级,可划分为低危险性,中危险 性和高危险性三个等级,并综合考虑各种因素,分别勾绘出 滑坡、崩塌、泥石流等地质灾害危险性等级区划图。

2.2 滑坡危险性评价

(1) 指标体系构建及量化方法。

研究区滑坡地质灾害指标选取滑坡灾点密度、坡度、地 表起伏度、坡型、水文条件、岩土条件、降水条件、断裂带及不 利的人类工程活动等。关于植被对地质灾害的影响较为复 杂:力学机理研究结果证明植被对滑坡具有防护作用,而植 物学机理研究结果证明植被对滑坡又具有促进和推动作 用¹⁷¹⁹。笔者认为,黄土区植被对不同灾种的影响存在差 别,学术界关于植被对滑坡、崩塌的研究方面尚无一致结论, 故本次研究不予考虑。

滑坡灾点密度由 ARCGIS 软件计算获取。

坡度、地表起伏度、坡型由 DEM 提取。

水文条件采用河网密度指标来反映,通过 ARCGIS 水文 分析功能提取河网,再求线密度。

岩土条件采用岩土体类型指标来表征。研究区岩层产 状大致呈水平分布,主要有坚硬块状碳酸盐类岩、坚硬层状 碎屑岩、坚硬半坚硬层状碎屑岩、砂砾石土、黄土等类型。 根据它们对滑坡灾害的贡献大小作归一化处理参与评价。

降水条件表征降水的集中程度。根据研究区的降水特性,选用降水不均匀系数来量化降水指标,即多年汛期

(6月-9月)平均降水量与多年平均降水量之比。将全区降水不均匀系数进行 0~1之间归一化差值处理。

断裂带指标反映其对滑坡的影响。对断裂带每隔500 m 做一个缓冲区,根据信息量值参与危险性评价。

不利的人类工程活动主要选取公路、铁路等线状要素求 取线密度参与评价,水利工程活动对滑坡的影响通过水文条 件(河网密度)来反映。

滑坡地质灾害危险性评价指标量化结果见表1。

表 1 滑坡地质灾害危险性评价指标量化

Tab. 1 Index quantification of hazard

			154 51 01	
评价指标		指标分级条件	信息量 计算值	信息量 排序
	x_{01}	≤0. 32	- 0. 282 77	-
滑坡灾点	x_{02}	0.32~ 0.88	0. 941 64	3
密度 x ₀ /(个• km ⁻²)	<i>x</i> ₀₃	0.88~ 1.12	1.152 2	2
() /	x_{04}	> 1.12	1.437 8	1
	<i>x</i> ₁₁	≤10	0.052 522	18
坡度 x1	x_{12}	10~ 20	0.015 602	22
(°)	<i>x</i> ₁₃	20~ 40	0. 223 762	9
	x_{14}	> 40	- 0. 430 69	-
	<i>x</i> ₂₁	≤100	- 0. 028 58	-
地表起	<i>x</i> ₂₂	100~ 140	0.056 16	17
八度 x 2 / m	<i>x</i> ₂₃	140~ 180	0. 003 98	24
	<i>x</i> ₂₄	> 180	- 0. 249 64	-
	<i>x</i> ₃₁	≤- 1	- 0. 196 59	-
坡型	<i>x</i> 32	- 1~ 0	0. 081 23	13
<i>x</i> 3	<i>x</i> ₃₃	0~ 1	0.016 21	21
	<i>x</i> 34	> 1	- 0.158 45	-
	x_{41}	≤1	- 0. 125 24	-
河网密度	<i>x</i> ₄₂	1~ 2	0.116 57	11
$/(\text{km} \cdot \text{km}^{-2})$	<i>x</i> ₄₃	2~ 3	0. 147 60	10
. ,	<i>x</i> 44	> 3	0. 428 24	5
	x_{51}	坚硬层状碎屑岩	0.371 40	7
ца та метал	<i>x</i> ₅₂	坚硬块状碳酸盐类	- 1.006 59	-
石工尖型 ※5	x 53	黄土	0.091 26	12
	<i>x</i> ₅₄	砂砾石土	0.073 75	14
	x 55	坚硬半坚硬层状碎屑岩	- 0. 243 91	-
欧고てわら	x_{61}	≤0. 937 5	0. 301 84	8
降小小均匀 系数 x6	x_{62}	0. 937 5~ 1. 036 2	- 0. 199 23	-
	<i>x</i> ₆₃	> 1.036 2	0.004 605	23
断裂带分布	x_{71}	> 1 500	- 0.014 653	-
x 7(距断裂	x_{72}	1 000~ 1 500	0.061 055	16
带距离)	<i>x</i> ₇₃	500~ 1 000	0.037 009	19
/ m	<i>x</i> ₇₄	≤500	0. 527 361	4
不利的人类	<i>x</i> ₈₁	≤1	- 0. 629 854	-
工程活	x_{82}	1~ 2	- 0. 158 757 3	-
动 x_8	<i>x</i> ₈₃	2~ 3	0. 061 677 2	15
$(\mathrm{km}^2 \mathrm{km}^2)$	X 91	> 3	0.393 834 1	6

注:表中"-"表示缺省,信息量值为负,表明该指标对滑坡无贡献,不参与排序。下同。

(2) 指标权重确定与危险等级区划。

信息量计算结果是事件发生概率的反映,而指标灰色关

联度分析可避免权重确定的主观随意性。根据表1中信息 量计算及排序结果,选取一级评价指标中最具代表性的二级 指标 x₇₄、x₄₄、x₈₄、x₅₁、x₆₁、x₃₂、x₂₂、x₁₃,将其分别与7个典型 滑坡灾点密度图层作空间叠加分析,得到各二级指标占典型 滑坡灾点密度图层的面积百分比(表2)。

表 2 滑坡相关指标占滑坡灾点密度图层的面积百分比

Tab. 2 A rea ratios of representative indexes to

point density of landslide

灾点密度 <i>x</i> 04	x 74	x 44	x ₈₄	<i>x</i> 51	<i>x</i> ₆₁	<i>x</i> ₃₂	<i>x</i> ₂₂	x ₁₃
0.35	0.104	0.354	0.142	0.585	0.115	0.131	0.159	0.132
0.70	0.039	0.370	0.039	0.585	0.028	0.033	0.035	0.034
0.95	0.004	0.409	0.013	0.438	0.008	0.007	0.006	0.006
1. 25	0.004	0.403	0.011	0.379	0.002	0.004	0.001	0.005
1. 55	0.004	0.531	0.005	0.114	0.002	0.002	0.001	0.002
1. 95	0.001	0.275	0.003	0.418	0.001	0.003	0	0.003
2.10	0	0.125	0.001	0.741	0	0.001	0	0.001

通过对表2数据作无量纲化处理,由公式(2)计算得到 各二级指标与典型滑坡地质灾害的灰色关联度,计算结果 如下:

 $x_{74} = 0.532; x_{42} = 0.601; x_{84} = 0.532; x_{53} = 0.578;$

 $x_{61} = 0.530; x_{32} = 0.530; x_{22} = 0.529; x_{13} = 0.530$

综合考虑各指标信息量排序及灰色关联度计算结果,进 而确定滑坡危险性评价一级指标权重见表 3。

表 3 滑坡灾害评价指标的权重分配

Tab. 3 Weight distribution of assessment factors

of landslide disaster

指标项	滑坡灾 点密度	坡度	起伏 度	坡型	河网 密度	岩土 类型	降水	断裂 分布	工程 活动
权重	0.20	0.10	0.02	0.03	0.15	0.15	0.10	0.15	0.10

滑坡危险性等级评定标准参照文献[20],并结合研究区 实际情况划定(表4),由此得到研究区滑坡危险性等级区划 图(图2)。

表 4 滑坡、崩塌、泥石流地质灾害危险性等级划分标准[20]

T ab. 4 Standard classification of hazard ranks of landslide,

collapse, and debris flow disasters ^[20]

等级	低危险区	中危险区	高危险区
标准	0~ 0.35	0.35~ 0.75	0.75~ 1

2.3 崩塌危险性评价

(1) 指标体系构建及量化方法。

研究区崩塌地质灾害指标选取崩塌灾点密度、坡度、地 表起伏度、坡型、水文条件、岩土条件、降水条件、断裂带及不 利的人类工程活动等,植被指标不予考虑。

崩塌地质灾害各评价指标的信息量值获取方法及技术 处理方法同滑坡,依次确定崩塌地质灾害评价指标的分级条 件(表5)。

(2) 指标权重确定与危险等级区划。

根据表5信息量计算及排序结果,选取一级评价指标中 最具代表性的二级指标 x74、x32、x44、x84、x53、x21、x14、x61,将

T ab. 5 Classification conditions of

naz ard assessment index of collapse disaster										
评价指标		指标分级条件	信息量 结果	主要 排序						
	x 01	≤0.4	- 0.0579	-						
崩塌灾点	x 02	0. 4~ 0.45	- 0. 107 96	-						
	<i>x</i> ₀₃	0.45~ 0.50	0. 257 94	9						
/(x ₀₄	> 0.5	1. 738 02	2						
	<i>x</i> 11	≤10	- 0. 099 1	-						
坡度 x1	x 12	10~ 20	- 0. 039 1	-						
(°)	x 13	20~ 40	0. 043 6	15						
	x 14	> 40	1.8700	1						
	x 21	≤50	0. 205 35	10						
地表起伏度	x 22	50~ 100	- 0. 159 54	-						
<i>x</i> ₂ / m	x 23	100~ 150	- 0.0699	-						
	x ₂₄	> 150	- 0. 028 46	-						
	<i>x</i> 31	≤- 1	- 0.0918	-						
披 刑 ~ .	x 32	- 1~ 0	0. 903 62	4						
圾型 X 3	x 33	0~ 1	0. 050 92	14						
	x 34	> 1	0. 138 98	12						
	<i>x</i> 41	≤1	- 0.007	-						
河网密度 x ₄	x 42	1~ 2	- 0. 272 6	-						
$/(km \cdot km^{-2})$	x 43	2~ 3	0. 407 24	8						
	x 44	> 3	0. 608 71	5						
	x 51	坚硬块状碳酸盐类	0. 153 92	11						
	x 52	砂砾石土	0. 441 7	7						
右土尖型 * 5	x 53	黄土	0. 020 13	17						
	x 54	坚硬半坚硬层状碎屑岩	0. 027 6	16						
	x 55	坚硬层状碎屑岩	- 0. 570 9	-						
欧水でわた	x_{61}	≤1.072 73	0. 097 16	13						
降小小均匀 系数 x ₆	x 62	1. 072 73~ 1. 145 45	- 0. 086 38	-						
	<i>x</i> 63	> 1. 145 45	- 0. 009 81	-						
	<i>x</i> 71	> 1 500	- 0. 051 49	-						
断裂带分布 (距断裂带	<i>x</i> 72	1 000~ 1 500	- 0. 059 51	-						
距离) x ₇ /m	x 73	500~ 1 000	- 0. 083 6	-						
	<i>x</i> ₇₄	≤500	1. 690 1	3						
7547 1 2	x_{81}	≤1	- 0. 847 42	-						
小村的人类 ⊤程活动 ★ ○	x 82	1~ 2	- 0. 217 87	-						
$/(km \cdot km^{-2})$	x 83	2~ 3	- 0. 204 10	-						
, (,)	x 84	> 3	0. 479 64	6						

其分别与7个典型崩塌灾点密度图层作空间叠加分析得到 各二级指标占典型灾点密度图层的面积面分比(表6)。

表 6 崩塌相关指标占崩塌灾点密度图层的面积百分比

Tab. 6 A rea ratios of representative indexes to point density of collapse

典型灾点 <i>x</i> 04	<i>x</i> 74	<i>x</i> 32	<i>x</i> 44	<i>x</i> 84	x 53	<i>x</i> ₂₁	<i>x</i> ₁₄	<i>x</i> 61
0. 049	0.090	0.319	0.010	0.131	0.663	0.052	0.676	0.097
0.050	0.114	0.343	0.022	0.249	0.702	0.072	0.768	0.184
0.052	0.092	0.333	0.035	0.230	0. 698	0.088	0.694	0.171
0.053	0.060	0.330	0.048	0.200	0.758	0.084	0.705	0.089
0.055	0.109	0.340	0.038	0.121	0.751	0.091	0.714	0.091
0.057	0.098	0.336	0.056	0.056	0.688	0.046	0.815	0.115
0.058	0.220	0.305	0.009	0.040	0.534	0.065	0.805	0.185

各二级指标 x₇₄、x₂₀、x₄₄、x₈₄、x₅₃、x₂₁、x₁₄、x₆₁与典型崩 塌地质灾害的灰色关联度计算方法同滑坡,计算结果如下:

x₇₄= 0.8989; x₂₂= 0.9689; ₄₄= 0.5966; ₈₄= 0.8136;
x₅₃= 0.9640; x₂₁= 0.8689; x₁₄= 0.9810; x₆₁= 0.8679
综合考虑信息量排序及灰色关联度计算结果,确定崩塌
地质灾害评价指标权重,见表7。

表 7 崩塌地质灾害评价指标的权重分配

Tab.7	Weight	distribution	of	assessment	factors	of	collapse	disaster
-------	--------	--------------	----	------------	---------	----	----------	----------

指标 项	崩塌灾 点密度	坡度	地形起 伏度	坡型	河网 密度	岩土 类型	降水不均 匀系数	断裂带 分布	工程 活动
权重	0.15	0.20	0.05	0.15	0.05	0.15	0.05	0.10	0.10

根据崩塌危险性评价指标权重大小(见表7),以及崩塌 危险性等级划分标准(表 4),得到研究区崩塌危险性等级区 划图(图 3)。

Fig. 3 The zoning map of collapse hazard ranks of collapse disaster

2.4 泥石流危险性评价

(1) 指标选取及量化。

由于研究区仅有 2 处泥石流灾害,且规模较小,难以获 得有价值的泥石流灾点密度信息,因此不能通过信息量模型 量化指标体系。但是根据笔者对黄陵县、延安城区和铜川耀 州区的泥石流研究,对黄土区泥石流危险性评价指标有以下 认识:汇水区崩塌、滑坡、泥石流综合灾点密度可以作为泥石 流危险性评价指标,因为泥石流汇水区域的崩塌产生的崩积 物和滑坡滑移带来的土石常常是泥石流物质源的重要组成; 汇水区坡度影响泥石流速度;在考虑坡度及崩滑流灾点密度 的情况下,可忽略汇水区坡型指标;汇水区岩土类型决定了 泥石流物质源的多少;汇水区植被覆盖率越大,且灌木、乔木 所占比例越大,则越不易发生泥石流;汇水区不利的人类工 程活动对泥石流起促进作用;可以不考虑汇水区的地形起伏 度、断裂带和地裂缝等因素对泥石流的影响。根据耀州区实 际情况,得到耀州区泥石流地质灾害危险性评价指标分级条 件(表 8)。

表 8 泥石流地质灾害危险性评价指标分级条件

Tab. 8 Classification conditions of

nazaru assessment muex of debris flow disaster									
评价指标	低危险条件	中危险条件	高危险条件						
汇水区崩滑流灾 点密度/(个・km ⁻²)	0~ 0.338	0. 338~ 0. 676	> 0. 676						
汇水区地形坡度 (°)	$0\sim 5 \text{ or } > 40$	5~ 15	15~ 40						
汇水区植被覆盖率 (%)	> 60	30~ 60	≤30						
汇水区河网密度 /(km•km ⁻²)	≤1	1~ 3	> 3						
汇水区岩土类型	坚硬层状碎 屑岩、坚硬块 状碳酸岩	坚硬半坚硬 层状碎屑岩	砂砾石土、 黄土						
汇水区不利的人类 工程活动/(km•km ²)	≤3	3~ 4	> 4						

(2) 指标权重确定。

结合耀州区泥石流发育特点及规律,同时参考延安城 区、黄陵县泥石流数据,得到耀州区泥石流地质灾害评价指 标的权重分配表(表9)。

表 9 泥石流地质灾害评价指标的权重分配

Tab. 9 Weight distribution of

assessment factors of debris flow disaster

指标项	汇水区崩	汇水区	汇水区	汇水区	汇水区	汇水区不
	滑流灾点	地形	植被	河网	岩土	利的工
	密度	坡度	覆盖率	密度	类型	程活动
权重	0.15	0.1	0.25	0.15	0.25	0.1

(3) 危险等级区划。

首先通过 GIS 手段提取表 8 指标分级条件下的泥石流 汇水区各指标图层;其次对每一指标的不同分级条件赋予相 应的权重:低危险赋 20%,中危险赋 30%,高危险赋 50%,然 后作归一化处理;结合贡献指标权重(表 9)对上述经过处理 后的指标图层进行叠加分析,运用表 4 所示的泥石流地质灾 害危险性等级划分标准,制作耀州区泥石流汇水区泥石流危 险等级区划图,根据山前地形地貌及人类活动情况,手工勾 绘山前泥石流危害区域,并赋予同汇水区一致的危害的等 级,最终制作完成泥石流地质灾害危险性等级区划图(图4)。

3 结论

(1) GIS 以其空间建模优势与信息量模型相结合,在铜 川市耀州地质灾害危险性评价中发挥了技术支撑作用。通 过将其评价结果与野外调查数据对比分析,发现二者具有高 度的一致性,证实该评价方法可行,具有向类似黄土区推广 的价值。

(2)将基于灰色理论的关联分析与 GIS 技术相结合参与 指标权重的确定,目前在地质灾害危险性评价领域尚属首 次。研究证实该方法不仅减少了人为干预,且避免了经验判 断的主观随意性,从而使得本次评价结果更趋科学、客观。

(3)按不同灾害类型分别构建评价指标体系进行地质灾 害危险性评价,遵循了铜川市耀州区不同地质灾害自身发育 特点和规律,为该地区的地质灾害分类管理提供了科学依据,且使得当地的地质灾害预防与控制工作更具针对性、时 效性和科学性。

参考文献(References):

- [1] 马寅生.黄河上游新构造活动与地质灾害风险评价[M].北京: 地质出版社,2003:158178.(MA Yirr sheng. Neotectonic activity and the evaluation of geological hazards risk in the Yellow River[M]. Beijing: Geological Publishing House, 2003:158 178.(in Chinese))
- [2] 潘懋,李铁锋. 灾害地质学[M]. 北京:北京大学出版社, 2002:
 105-106. (PAN Mao, LI Tie feng. Disaster geology[M]. Bei jing: Peking University Press, 2002: 105-106. (in Chinese))
- [3] LEES, CHOIJ. Landslide susceptibility mapping using GIS and

• 76 • 水文地质与工程地质

the weight of evidence model[J]. International journal of geographical information science, 2004, 18(8): 789 814.

- [4] SEYEDEH ZOHREH MOUSAVIF, ATAOLLAH KAVIAN, KARIM SOLEIMANIt, et al. GIS based spatial prediction of landslide susceptibility using logisticregression model[J]. Geomatics, Natural Hazards & Risk, 2011, 2(1): 33 50.
- [5] M garay C, Fernandez T, Hamdouni R El, et al. Evaluation and validation of landslide susceptibility obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain) [J]. Natural Hazards, 2007, 41(1):61-79.
- [6] Nandi A, Shakoor A. A GIS based landslide susceptibility evaluation using bivariate and multivariate statistical analyses [J]. Engineering Geology, 2010, 110(1/2):1120.
- [7] MOWENXIE, TET SUROE SAKI, GUOYUNZHOU. GIS-Based probabilistic mapping of landslide hazard using a threedimensional deterministic model[J]. Natural Hazards, 2004, 33 (2): 265-282.
- [8] Sujit Mondal, Ramkrishna Maiti. Landslide susceptibility analysis of shir khola watershed, darjiling: A remote sensing & GIS based analytical hierarchy process(AHP) [J]. Journal of the Indian Society of Remote Sensing, 2012, 40(3): 483-496.
- [9] Hyuck Jin Park, Jung Hyun Lee, Ik Woo. Assessment of raim fall induced shallow landslide susceptibility using a GIS based probabilistic approach[J]. Engineering Geology, 2013, 161: F 15.
- [10] Nagarajan R, Roy A, Khire MV, et al. Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western ghat, India[J]. International journal of remote sensing, 1998, 19(4): 573-585.
- [11] 李为乐,唐川,杨武年,等. RS和GIS技术在县级区域泥石流 危险区划中的应用研究一以四川省泸定县为例[J]. 灾害学, 2008,23(2):7175. (LI Weile, TANG Chuan, YANG Wur nian, et al. Research on application of GIS and RS in debris flow hazard zonation at county level A case study in Luding county of Sichuan province[J]. Journal of Catastrophology, 2008,23(2):7175. (in Chinese))
- [12] 樊晓一,乔建平,陈永波. 层次分析法在典型滑坡危险度评价 中的应用[J]. 自然灾害学报, 2004, 13(1):72 76. (FAN Xiaσ yi, QIAO Jiar ping, CHEN Yong bo. Application of analytic landslide danger degree[J]. Journal of Nature disasters, 2004, 13(1):72-76. (in Chinese))
- [13] 李晓聪. 趋势面分析法在地质灾害危险性区划中的应用[D].

太原理工大学, 2007. (LI Xiao cong. Application of the tendency analytic method in the geology disaster dangertake [D]. Taiyuan University of Technology, 2007. (in Chinese))

- [14] 刘琳.临潼区地质灾害危险性分区与评价[D].西安科技大学, 2008.(LIU Lin. Divided into regions and estimate on danger assessment of geological hazard in Lintong County[D].Xi'an University of Science and Technology, 2008.(in Chinese))
- [15] 高治群,薛传东,尹飞,等.基于 GIS 的信息量法及其地质灾害 易发性评价应用一以滇中晋宁县为例[J].地质与勘探,2010, 46(6): 1112 1118. (GAO Zhi qun, XUE Chu ar dong, YIN Fei, et al. GIS based information acquisition analysis and its application to assessment of areas prone to geological hazards: A case study of Jinning County, central Yunnan Province[J]. Geology And Exploration, 2010, 46(6): 1112 1118. (in Chinese))
- [16] 邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社, 1987:17-165.(DENG Jur long. Essential methods of grey system[M].Wuhan: Huazhong University of Science and Techr nology Press, 1987:17-165.(in Chinese))
- [17] 徐则民,黄润秋,唐正光,等. 植被护坡的局限性及其对深层滑 坡孕育的贡献[J]. 岩石力学与工程学报,2005,24(3):438 450. (XU Zemin, HANG Rum qiu, TANG Zheng guang, et al. Limitations of biotechnical slope protection and contribution of vegetation to deep seated land slide preparation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005,24 (3):438 450. (in Chinese))
- [18] 李铁军,李晓华. 植被固坡机制的研究[J]. 水土保持应用技术, 2004(2): ト 3. (LI Tie jun, LI xiao hua. Study on fixing slopes mechanism of vegetation [J]. Technology of Soil and Water Conservation, 2004(2): ト 3. (in Chinese))
- [19] 刘惠军,段志刚,崔银祥,等.植物特征与某滑坡坝形成时间和 稳定性的关系[J].山地学报,2003(6):98 100.(LIU Hurjun, DUAN Zhrgang, CUI Yirrxiang, et al. Relation between the character of the plant growth and the formation time and star bility of a land slide dam[J]. Journal of Mountain Science, 2003 (6):98 100.(in Chinese))
- [20] 朱良峰, 吴信才, 殷坤龙, 等. 基于信息量模型的中国滑坡灾害风险区划研究[J]. 地球科学与环境学报, 2004, 9(3): 52 56.
 (ZHULiang feng, WUXir cai, YINKurrlong, et al. Risk zornation of landslide in China based on information content model[J]. Journal of Earth Sciences and Environment, 2004, 9(3): 52-56. (in Chinese))