2017, 15(1):60-66.
摘要:
水文序列非平稳与非线性的复杂变化导致水文序列中长期预测的准确性备受质疑。“分解-预测-重构”模式作为一种新的有效的预测思路近年来备受业界和学者关注。但受到高频分量预测误差大、趋势走向不确定等问题困扰,这种模式在发展过程中仍有诸多需要改进的地方。其中,径流分量的重构方法是控制高频分量误差,提高整体预测精度的关键性措施,其优劣对预测效果实现有着重要的意义。基于经验模态分解(EMD)和自回归模型(AR)建立“分解-预测”耦合模型,结合粒子群优化(PSO)算法,提出PSO重构系数优化法和高频分量剔除+重构系数优化法两种重构方法,结合前人提出的高频分量剔除法,以陕北丁家沟站、关中华县站、陕南白河站为算例,对不同重构方法的效果进行对比研究。研究结果表明:基于高频分量剔除法、PSO重构系数优化法、高频分量剔除+重构系数优化法三种重构方法的预测效果均较好,五项误差评价指标均优于标准重构法,三种重构方法均可不同程度地提高预测精度。对比研究发现:高频分量剔除法在重构过程中剔除了最不稳定且最难预测的高频分量,提高了预测精度,但提升效果有限;PSO重构系数优化法对所有径流分量赋予优化重构系数并重构,可最大程度地实现分量间的平差,有效提高了预测精度;高频分量剔除+重构系数优化法综合上述两种方法的优势,取得了比其他方法更好的预测效果。